Epithelial protein-tyrosine phosphatase 1B contributes to the induction of mammary tumors by HER2/Neu but is not essential for tumor maintenance.

نویسندگان

  • Kamal K Balavenkatraman
  • Nicola Aceto
  • Adrian Britschgi
  • Urs Mueller
  • Kendra K Bence
  • Benjamin G Neel
  • Mohamed Bentires-Alj
چکیده

Protein-tyrosine phosphatase 1B (PTP1B), a well-established metabolic regulator, plays an important role in breast cancer. Using whole-body PTP1B knockout mice, recent studies have shown that PTP1B ablation delays HER2/Neu-induced mammary cancer. Whether PTP1B plays a cell-autonomous or a noncell-autonomous role in HER2/Neu-evoked tumorigenesis and whether it is involved in tumor maintenance was unknown. We generated mice expressing HER2/Neu and lacking PTP1B specifically in the mammary epithelium. We found that mammary-specific deletion of PTP1B delays the onset of HER2/Neu-evoked mammary tumors, establishing a cell autonomous role for PTP1B in such neoplasms. We also deleted PTP1B in established mouse mammary tumors or depleted PTP1B in human breast cancer cell lines grown as xenografts. PTP1B inhibition did not affect tumor growth in either model showing that neither epithelial nor stromal PTP1B is necessary for tumor maintenance. Taken together, our data show that despite the PTP1B contribution to tumor onset, it is not essential for tumor maintenance. This suggests that PTP1B inhibition could be effective in breast tumor prevention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer.

The protein-tyrosine phosphatase 1B (PTP1B; PTPN1) is an important regulator of mammalian metabolism and also helps control signaling by growth factors, cytokines, and extracellular matrix. Gene knockout studies in mice established PTP1B as a key negative regulator of the insulin and leptin receptors. Experiments using PTP1B(-/-) fibroblast lines, dominant-negative mutants, or small interfering...

متن کامل

Dependent Breast Tumorigenesis − Proliferation, Survival, and HER2-Neu Oncogene p130Cas as a New Regulator of Mammary Epithelial Cell

To investigate the mechanisms through which p130Cas adaptor protein is linked to tumorigenesis, we generated mouse mammary tumor virus (MMTV)-p130Cas mice overexpressing p130Cas in the mammary gland. MMTVp130Cas transgenic mice are characterized by extensive mammary epithelial hyperplasia during development and pregnancy and by delayed involution at the end of lactation. These phenotypes are as...

متن کامل

Proteomic characterization of Her2/neu-overexpressing breast cancer cells.

The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combina...

متن کامل

Immunization of metastatic breast cancer patients with CD80-modified breast cancer cells and GM-CSF.

Tumor-assocla,ted antigens have been identified on a variety of human neoplasms. Each of these antigens may be able to serve as a target for an immune respOf.lse, the result of which would be eliminatjon of the tumor celL An essential component of this immune response is the presentation of antigen to potential effector cells. This can be accom­ plished via host professional antigen~presenting ...

متن کامل

Hunk is required for HER2/neu-induced mammary tumorigenesis.

Understanding the molecular pathways that contribute to the aggressive behavior of human cancers is a critical research priority. The SNF1/AMPK-related protein kinase Hunk is overexpressed in aggressive subsets of human breast, ovarian, and colon cancers. Analysis of Hunk(–/–) mice revealed that this kinase is required for metastasis of c-myc–induced mammary tumors but not c-myc–induced primary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 2011